direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×D12, C12⋊2C23, D6⋊1C23, C6.3C24, C23.40D6, C6⋊1(C2×D4), (C2×C6)⋊6D4, (C2×C4)⋊9D6, C3⋊1(C22×D4), (C22×C4)⋊7S3, C4⋊2(C22×S3), (S3×C23)⋊3C2, (C22×C12)⋊7C2, C2.4(S3×C23), (C2×C12)⋊12C22, (C2×C6).64C23, (C22×S3)⋊5C22, C22.30(C22×S3), (C22×C6).45C22, SmallGroup(96,207)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×D12
G = < a,b,c,d | a2=b2=c12=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 578 in 236 conjugacy classes, 105 normal (9 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C12, D6, D6, C2×C6, C22×C4, C2×D4, C24, D12, C2×C12, C22×S3, C22×S3, C22×C6, C22×D4, C2×D12, C22×C12, S3×C23, C22×D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, D12, C22×S3, C22×D4, C2×D12, S3×C23, C22×D12
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 25)(11 26)(12 27)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 37)(21 38)(22 39)(23 40)(24 41)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 13)(11 14)(12 15)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 37)(33 38)(34 39)(35 40)(36 41)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 38)(14 37)(15 48)(16 47)(17 46)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)
G:=sub<Sym(48)| (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,38)(14,37)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)>;
G:=Group( (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,38)(14,37)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39) );
G=PermutationGroup([[(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,25),(11,26),(12,27),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,37),(21,38),(22,39),(23,40),(24,41)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,13),(11,14),(12,15),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,37),(33,38),(34,39),(35,40),(36,41)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,38),(14,37),(15,48),(16,47),(17,46),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39)]])
C22×D12 is a maximal subgroup of
(C2×C4)⋊9D12 (C2×C12)⋊5D4 C6.C22≀C2 D12.31D4 D12⋊13D4 (C2×C4)⋊6D12 C23⋊3D12 (C2×D12)⋊10C4 (C2×C4)⋊3D12 C4⋊C4⋊36D6 D12⋊16D4 D12.36D4 C23.53D12 C42⋊9D6 C42⋊11D6 D12⋊23D4 D12⋊19D4 D12⋊21D4 C6.1202+ 1+4 C6.1462+ 1+4 C22×S3×D4
C22×D12 is a maximal quotient of
C42.276D6 C23⋊4D12 C6.2+ 1+4 C42⋊10D6 C42⋊11D6 C42.92D6 D4⋊5D12 D4⋊6D12 Q8⋊6D12 Q8⋊7D12 C24.9C23 D4.11D12 D4.12D12 D4.13D12
36 conjugacy classes
| class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 3 | 4A | 4B | 4C | 4D | 6A | ··· | 6G | 12A | ··· | 12H |
| order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
| size | 1 | 1 | ··· | 1 | 6 | ··· | 6 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
36 irreducible representations
| dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + |
| image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D12 |
| kernel | C22×D12 | C2×D12 | C22×C12 | S3×C23 | C22×C4 | C2×C6 | C2×C4 | C23 | C22 |
| # reps | 1 | 12 | 1 | 2 | 1 | 4 | 6 | 1 | 8 |
Matrix representation of C22×D12 ►in GL5(ℤ)
| 1 | 0 | 0 | 0 | 0 |
| 0 | -1 | 0 | 0 | 0 |
| 0 | 0 | -1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| -1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | -1 | 0 |
| 0 | 0 | 0 | 0 | -1 |
| -1 | 0 | 0 | 0 | 0 |
| 0 | -1 | -1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | -1 | 0 |
| -1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | -1 | 0 | 0 |
| 0 | 0 | 0 | -1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,Integers())| [1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0],[-1,0,0,0,0,0,1,0,0,0,0,1,-1,0,0,0,0,0,-1,0,0,0,0,0,1] >;
C22×D12 in GAP, Magma, Sage, TeX
C_2^2\times D_{12} % in TeX
G:=Group("C2^2xD12"); // GroupNames label
G:=SmallGroup(96,207);
// by ID
G=gap.SmallGroup(96,207);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,579,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^12=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations